Comment connaitre els horraires de marée, etc;
comprendre (ou .... tenter de comprendre) le mode de calcul prédictif des marée....
SHOM - Service Hydrographique et Océanographique de la Marine
www.shom.fr/
http://www.shom.fr/fr_page/fr_serv_prediction/ann_marees.htm
Nous vous proposons tout simplement un freeware qui fera celà très bien pour vous :
Marées dans le Monde 2.13 est un logiciel gratuit destiné au calcul de la marée. Il fusionne la base de données de Wxtide32, le célèbre freeware anglo-saxon et celle des versions antérieures du programme, de sorte qu'il devient possible de prédire la hauteur d'eau dans plus de 9500 endroits du globe. La précision, qui n'atteint pas celle des annuaires fournis par les organismes professionnels comme le SHOM, reste compatible avec les besoins usuels de la navigation, l'erreur étant rarement supérieure à 40 cm pour les hauteurs et 15 minutes pour les heures. Il convient néanmoins de confronter les résultats avec ceux fournis par les documents officiels dont la présence est obligatoire à bord. En tout état de cause, la qualité de la prévision est comparable pour tous les soft free- ou sharewares disponibles, les méthodes de calcul étant sensiblement les mêmes.
L'interface permet l'exportation de tous les résultats sous forme de fichiers textes, solution bien adaptée à l'environnement marin. Qui dispose en effet d'une imprimante à bord de son voilier ? Néanmoins, l'impression des tables de marées est assurée avec une résolution maximale de 300 d.p.i. Il est en effet agréable de disposer à la mer de documents aisément lisibles. La dernière version améliore la cartographie (vectorielle), la gestion des images (jpeg désormais) et l'aide en ligne qui passe en HTML, le standard sous Vista.
L'installation de ce programme est possible sur toutes les stations fonctionnant sous Windows, quelle que soit la version de ce système d'exploitation à partir de 95. Téléchargez le programme (24.2Mo) et dé zippez – le. Il va apparaître 12 fichiers dont neuf volumineux Marées.cab. qui se présentent comme des fichiers compressés, ne cherchez pas à les décompresser avec WinZip. Les trois autres fichiers sont Seup.lst, Conseils d'installation.txt et Setup.exe. Après avoir pris connaissance des conseils d'installation, lancez le Setup.exe.Télécharger Marées dans le Monde
Logiciel de calcul de marées.
Editeur : StrassGraüerMarina Softwares Site web : Type : Freeware Langue : Système : Vista / 2003 / 2000 / NT / XP / Me / 98 / 95
La présence de la Lune et du Soleil, et leur mouvement, sont à l'origine de forces de gravitation qui génèrent la marée. La force génératrice de la marée dérive d'un potentiel que nous allons décrire ici.
La distance de la terre à la lune est d'environ 300 000 km alors que le rayon de la terre est d'environ 6000 km. La terre peut donc être représentée par un point matériel placé au centre de notre globe et affecté de toute la masse terrestre. Cependant l'attraction que subit une particule en un point quelconque du globe diffère en amplitude et en phase.
Notons Π, le potentiel dont dérive la force génératrice de la marée. Dans un repère géocentrique on écrit ce potentiel appliqué à un point P de la surface du globe, affecté des coordonnées (a,λ,φ) sous la forme :
(eq : 1.1)
avec :
On peut exprimer d en fonction de a, RLune et ψ par la relation de Pythagore (voir figure représentation Terre - Lune) :
(eq : 1.2)
si on exprime 1/d, l'équation précédente (eq 1.2) devient :
(eq : 1.3)
La lune et le soleil sont les seuls astres dont l'influence est notable dans la génération des marées, l'un en raison de sa proximité, l'autre en raison de sa masse.
Le terme a / RLune vaut environ 1 / 60 pour la lune et 1 / 2,5.104 pour le soleil. On peut donc estimer que :
Il devient donc possible, avec cette supposition de décomposer (eq 1.3) sous la forme d'une somme de polynômes de Legendre.
avec les polynômes de Legendre définis par :
Si on se limite à l'ordre 2 qui représente déjà 98% du signal [Thèse de LeProvost 1973], on peut écrire le potentiel (eq 1.1) sous la forme :
(eq : 1.4)
On donne les coordonnées (RLune,λLune,φLune) à l'astre et les coordonnées (RP,λP,φP) au point du globe P, on peut donc exprimer cos(ψ) sous la forme :
L'équation (eq 1.4) devient alors :
(eq : 1.5)Si on détaille chacun des trois termes de l'équation (eq 1.5), et que l'on ne considère que le mouvement de rotation de la Terre en un jour, nous pouvons obtenir les termes de génération des premières ondes de marée.
En effet :
Nous ne développerons pas davantage ici le potentiel en fonction de tous les mouvements orbitaux des deux astres perturbateurs. Nous ne citerons que les travaux de Darwin :
Ce sont Darwin et Doodson qui ont nommé les termes du développement du potentiel, ces noms sont toujours utilisés pour nommer les ondes. Les noms correspondent à un assemblage d'informations, ainsi M2 vient de M (Moon) un terme lunaire et 2 un terme semi-diurne, il en est de même pour l'onde solaire S2.
L'attraction de la lune et du soleil crée une onde de marée qui, en se propageant, crée le phénomène de marée. La vitesse de propagation est élevée dans les eaux profondes (400 nœuds en Atlantique), beaucoup plus faible dans les eaux peu profondes (30 nœuds en Manche). Cette vitesse détermine le décalage des horaires de haute mer en différents lieux.
L'ampleur et la périodicité de la marée dépendent du lieu : ils sont déterminés par de nombreux facteurs dont la taille du bassin maritime, sa profondeur, le profil des fonds marins, l'existence de bras de mer, la latitude, etc. Dans certaines mers, comme la Méditerranée, tous ces facteurs sont à l'origine d'une marée tellement faible qu'elle peut être négligée. Ailleurs les marées peuvent atteindre plus de 10 mètres de marnage.
Selon le lieu, du fait des caractéristiques ci-dessus, on distingue des marées de 3 types :
La marée peut être calculée longtemps à l'avance puisqu'elle dépend uniquement de caractéristiques constantes :
Par des observations répétées, les services chargés de prédire les marées (en France, le SHOM), ont mis au point des modèles permettant de calculer à l'avance les horaires et les hauteurs des marées futures.
Une marée, en un lieu et à une date et une heure données, est définie par :
NB: Les calculs de hauteur d'eau, effectués en particulier avec la méthode des douzième listée ci dessous, ne sont pas précis. Il est conseillé d'utiliser les courbes types de chaque port principal (données dans l'ouvrage du SHOM). De plus, quelle que soit la méthode utilisée, le navigateur devrait prendre une marge de sécurité (pied de pilote) qu'il fixera en fonction de son expérience personnelle.
Les marées en France métropolitaine sont de type semi-diurne, ce qui signifie qu'il y a de manière générale deux pleines mers et deux basses mers en 24 heures (en réalité, 24h50mn en moyenne).
Par exemple, le 4 février 2006, les horaires des marées à Saint-Malo sont les suivants :
Les coefficients de ces marées sont respectivement de 77 et 69.
En France, l'ampleur de la marée par rapport à sa valeur moyenne est indiquée par le coefficient de la marée qui prend une valeur comprise entre 20 et 120. La valeur 100 est associée à une amplitude d'une marée fixée arbitrairement par le SHOM.
Remarque : le coefficient de marée est identique dans un bassin donné à une date donnée pour une marée donnée (par exemple, les côtes de la Manche et de l'Atlantique) car elles sont touchées par la même onde de marée alors que le marnage varie car il dépend de la configuration de la zone côtière.
Les hauteurs de marée sont indiquées en France par rapport au 0 des plus basses mers qui est le niveau le plus bas que peut atteindre théoriquement la mer, soit la hauteur d'eau à la basse mer d'une marée de coefficient 120 (coefficient de marée le plus élevé).
La variation de la hauteur d'eau est lente au début de la marée, plus forte à mi marée et se réduit en fin de marée.
On peut approcher cette évolution sinusoïdale en appliquant la règle des douzièmes , on utilise alors une ligne brisée qui se rapproche de la courbe sinusoïdale.
Si on divise en 6 unités de temps la période qui s'écoule entre basse mer et pleine mer, la variation relative du niveau des eaux est approximativement de 1/12 durant la première unité de temps, 2/12 la deuxième unité de temps, puis 3/12, 3/12, 2/12, 1/12 (soit 1/12, 3/12, 6/12, 9/12, 11/12, 12/12).
Le sixième de marée est appelé "heure de marée" ou "heure-marée".
Appliqué à la première marée montante du 4 février à Saint-Malo, on obtient :
soit une marée de 323 minutes; l'heure de marée est de (323/6)= 54 minutes
la différence (marnage) est de 9,05 mètre (11,3-2,25) ==> 1/12 = 75,42 cm
Ce qui donne le tableau suivant des hauteurs d'eau :
Heure | Hauteur | Variation relative | soit une hauteur de (à ajouter à la hauteur d'eau BM) | État de la marée |
5h53 | 2,25 m. | Basse mer | ||
6h47 | 3 m | +1/12 | 1/12 du marnage | |
7h41 | 4,51 m. | +2/12 | 3/12 = 1/4 du marnage | 1/4 de la marée |
8h35 | 6,78 m. | +3/12 | 6/12 = 1/2 du marnage | mi-marée |
9h29 | 9,04 m. | +3/12 | 9/12 = 3/4 du marnage | 3/4 de la marée |
10h23 | 10m55 | +2/12 | 11/12 = marnage - 1/12 | |
11h16 | 11,30 m. | +1/12 | 12/12 = marnage | Pleine mer |
Sur le même principe que la méthode des douzièmes qui est une approximation d'une courbe sinusoïdale, on peut graphiquement trouver une hauteur d'eau en fonction de l' "heure de marée" et vice-versa en dessinant un demi-cercle.
Soit un demi-cercle :
La projection sur le diamètre (le cosinus) correspond à la hauteur d'eau.
Les horaires, les coefficients et les hauteurs d'eau des marées sont fournis dans l'Annuaire des Marées des guides nautiques pour les ports principaux.
Pour des ports dit rattachés comme Cancale, les heures et les hauteurs des marées se déduisent des caractéristiques de la marée du port principal dont ils sont proches (Saint-Malo) en appliquant des corrections (par exemple +5 minutes et +0,75 cm); ces données sont indiquées pour les marées de vives eaux et de mortes eaux (on interpole pour les marées moyennes).
Pour calculer la profondeur (P), la démarche est donc la suivante :
Certains phénomènes atmosphériques peuvent avoir une influence sur la hauteur d'eau :
Les données sont valables pour une pression atmosphérique moyenne (1013 hPa), les hauteurs doivent être corrigées de 10 cm pour 10 hPa de variation par rapport à la pression moyenne. Exemples: